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1 Introduction

The method of separation of variables for solving PDEs with discontinuous boundary conditions
naturally led to ODE with discontinuities inside of the interval which often appear in mathemat-
ics. Inverse spectral problem consists in recovering operators from their spectral characteristics.
For example the mathematical formulation of a large variety of technical and physical problem
led to inverse problems such as identifying the density of the thing from data collected from the
sets of frequencies of oscillations of the string with barrier.

Sturm–Liouville problems with transmission conditions at interior points arise in a variety
of applications in engineering and we refers to Amirov (2006) for a nice discussion and further
information. The inverse spectral Sturm–Liouville problem can be regarded as three aspects,
e.g., existence, uniqueness and reconstruction of the coefficients given specific properties of
eigenvalues and eigenfunctions. Inverse problems with the discontinuities conditions inside the
interval play an important role in mathematics, mechanics, radio electronics, geophysics, and
other fields of science and technology. As a rule, such problems are related to discontinuous and
non-smooth properties of a medium (Anderssen, 1977; Freiling et al., 2001, 2010; Hald, 1984;
Krueger, 1982).

We refer to the somewhat complementary surveys in inverse Sturm–Liouville problems with
discontinuous conditions in Amirov (2006), Freiling et al. (2010), Hald (1984), Koyunbakan
(2008, 2011), Shahriari (2014, 2017, 2021), Shahriari et al. (2012), Shieh et al. (2008), Willis
(1985), Yang et al. (2009), Yu-Ping (2011), and Yurko (2000). In this manuscript, we generalize
the results of Hochstadt (1973), refining the approach of Levinson (1949) to show that precisely
how much q has freedom where the µn and all but finitely many of the λn are specified. Note that
the eigenvalues µn is obtained with replacing H by H in (2). The similar papers for Hochstadt’s
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result are in Binding et al. (2002), Koyunbakan (2008, 2011), Shahriari (2014, 2021).

2 The Hilbert space formulation and properties of the spectrum

We consider the boundary value problem

ℓy := −y′′ + qy = λy (1)

subject to the Robin boundary conditions

L1(y) := y′(0) + h y(0) = 0,

L2(y) := y′(π) +H y(π) = 0, (2)

with transmission (discontinuous) conditions

Ui(y) := y(di + 0)− aiy(di − 0) = 0,

Vi(y) := y′(di + 0)− biy
′(di − 0)− ciy(di − 0) = 0, (3)

where q(x) is real-valued function in L2[0, π]. Also we assume that h, H and ai, bi, ci di,
i = 1, 2, . . . ,m − 1 (with m ≥ 2) are real numbers, satisfying aibi > 0, d0 = 0 < d1 < d2 <
... < dm−1 < dm = π. For simplicity we use the notation L = L(q(x);h;H; di), for the problem
(1)–(3). To obtain a self-adjoint operator we define the following weight function

w(x) =


1, 0 ≤ x < d1,
1

a1b1
, d1 < x < d2,

...
1

a1b1···am−1bm−1
, dm−1 < x ≤ π.

Now our Hilbert space will be H := L2((0, π);w) associated with the weighted inner product

⟨f, g⟩H :=

∫ π

0
fgw.

The corresponding norm will be denoted by ∥f∥H = ⟨f, f⟩1/2H . In this Hilbert space we construct
the operator

A : H → H

with domain

dom (A) =

{
f ∈ H

∣∣∣∣ f, f ′ ∈ AC
(
∪m−1
0 (di, di+1)

)
,

ℓf ∈ L2(0, π), Ui(f) = Vi(f) = 0

}
by

Af = ℓf with f ∈ dom (A) .

Throughout this paper AC
(
∪m−1
0 (di, di+1)

)
denotes the set of all functions whose restriction

to (di, di+1) is absolutely continuous for all i = 0, . . . ,m− 1. In particular, those functions will
have limits at the boundary points di (see Shahriari et al. (2012)).
From the linear differential equations we obtain that the modified Wronskian

W (u, v) = w(x)
(
u(x)v′(x)− u′(x)v(x)

)
is constant on x ∈ [0, d1)∪m−2

1 (di, di+1)∪(dm−1, π] for two solutions ℓu = λu, ℓv = λv satisfying
the transmission conditions (3). Using the formula for the modified Wronskian W (u, v)(x) =
W (u, v)(x0), for x0 ∈ [0, d1) ∪m−2

1 (di, di+1) ∪ (dm−1, π]. So, W (u, v) does not depend on x.
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Lemma 1. The operator A is self-adjoint.

Proof. By employing twice the integration by part, one can write⟨
Au, v

⟩
H =W

(
u, v

)∣∣
x=π

−W
(
u, v

)∣∣
x=0

+
⟨
u,Av

⟩
H.

It follows from the conditions (2) and (3),

W
(
u, v

)∣∣
x=π

−W
(
u, v

)∣∣
x=0

= 0.

Therefore A is self-adjoint operator on L2((0, π);w).

In particular, the eigenvalues of A, and hence of L, are real and simple. To see that they
are simple it suffices to observe that the associated Cauchy problem (1) and (3) subject to the
initial conditions f(x0 ± 0) = f0, f

′(x0 ± 0) = f1 (with x0 ∈ [0, π]) has a unique solution.
For any function f ∈ dom (A), we will denote by fj , 1 ≤ j ≤ m, the restriction of f to the
subinterval (dj−1, dj). Moreover, we will set fj(dj−1) = f(dj−1 + 0) and fj(dj) = f(dj − 0).

Suppose that the functions φ(x, λ) and ψ(x, λ) are solutions of (1) under the initial conditions

φ(0, λ) = 1, φ′(0, λ) = −h, (4)

and

ψ(π, λ) = 1, ψ′(π, λ) = −H,

as well as the jump conditions (3), respectively. Moreover, we set

∆(λ) :=W (φ(λ), ψ(λ)) = L1(ψ(λ)) = −w(π)L2(φ(λ)).

Then ∆(λ) is an entire function whose roots λn coincide with the eigenvalues of L.

Theorem 1. (Shahriari et al., 2012, Thm. 3.1) Let λ = ρ2 and τ := Imρ. For equation (1)
with boundary conditions (2) and jump conditions (3) as |λ| → ∞, the following asymptotic
formulas hold:

φ(x, λ) =



cos ρx+O
(
exp(|τ |x)

ρ

)
, 0 ≤ x < d1,

α1 cos ρx+ α′
1 cos ρ(x− 2d1) +O

(
exp(|τ |x)

ρ

)
, d1 < x < d2,

α1α2 cos ρx+ α′
1α2 cos ρ(x− 2d1) + α1α

′
2 cos ρ(x− 2d2)

+α′
1α

′
2 cos ρ(x+ 2d1 − 2d2) +O

(
exp(|τ |x)

ρ

)
, d2 < x < d3,

...

α1α2...αm−1 cos ρx+

+α′
1α2...αm−1 cos ρ(x− 2d1) + · · ·

+α1α2...α
′
m−1 cos ρ(x− 2dm−1)+

+α′
1α

′
2α3...αm−1 cos ρ(x+ 2d1 − 2d2) + · · ·

+α1...α
′
i...α

′
j ...αm−1 cos ρ(x+ 2di − 2dj)

+α1...α
′
i...α

′
j ...α

′
k...αm−1 cos ρ(x− 2di + 2dj − 2dk) + · · ·

+α′
1α

′
2...α

′
m−1 cos ρ(x+ 2(−1)m−1d1 + 2(−1)m−2d2 + · · · − 2dm−1)

+O
(
exp(|τ |x)

ρ

)
, dm−1 < x ≤ π,
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and

φ′(x, λ) =



ρ[− sin ρx] +O(exp(|τ |x)), 0 ≤ x < d1,

ρ[−α1 sin ρx− α′
1 sin ρ(x− 2d1)] +O(exp(|τ |x)), d1 < x < d2,

ρ[−α1α2 sin ρx− α′
1α2 sin ρ(x− 2d1)−

−α1α
′
2 sin ρ(x− 2d2)− α′

1α
′
2 sin ρ(x+ 2d1 − 2d2)]

+O(exp(|τ |x)), d2 < x < d3,
...

ρ[−α1α2...αm−1 sin ρx− α′
1α2...αm−1 sin ρ(x− 2d1)− · · · − α1α2...α

′
m−1

sin ρ(x− 2dm−1)− α′
1α

′
2α3...αm−1 sin ρ(x+ 2d1 − 2d2)− · · ·

−α1...α
′
i...α

′
j ...αm−1 sin ρ(x+ 2di − 2dj)

−α1...α
′
i...α

′
j ...α

′
k...αm−1 sin ρ(x− 2di + 2dj − 2dk) + · · ·

−α′
1α

′
2...α

′
m−1 sin ρ(x+ 2(−1)m−1d1 + 2(−1)m−2d2 + · · · − 2dm−1)]

+O(exp(|τ |x)), dm−1 < x ≤ π,

where

αi =
ai + bi

2
and α′

i =
ai − bi

2
,

for i = 1, 2, ...,m− 1. The characteristic function satisfies

∆(λ) =ρw(π)
[
α1α2...αm−1 sin ρπ + α′

1α2...αm−1 sin ρ(π − 2d1) + · · ·
+ α1α2...α

′
m−1 sin ρ(π − 2dm−1) + α′

1α
′
2α3...αm−1 sin ρ(π + 2d1 − 2d2)

+ · · ·+ α1...α
′
i...α

′
j ...αm−1 sin ρ(π + 2di − 2dj)

+ α1...α
′
i...α

′
j ...α

′
k...αm−1 sin ρ(π − 2di + 2dj − 2dk) + · · ·

+ α′
1α

′
2...α

′
m−1 sin ρ(π + 2(−1)m−1d1 + 2(−1)m−2d2 + · · · − 2dm−1)

]
+O(exp(|τ |π)).

From the above theorem it follows that

|φ(ν)(x, λ)| = O(|ρ|ν exp(|τ |x)), 0 ≤ x ≤ π, ν = 0, 1. (5)

By changing x to π−x one can obtain the asymptotic form of ψ(x, λ) and ψ′(x, λ). In particular,

|ψ(ν)(x, λ)| = O(|ρ|ν exp(|τ |(π − x))), 0 ≤ x ≤ π, ν = 0, 1.

As a consequence of Valiron’s theorem (Levin, 1996, Thm. 13.4) and theorem (Shahriari et al.,
2012, Thm. 3.2) we obtain:

Theorem 2. The eigenvalues λn = ρ2n of the boundary value problem L satisfy

ρn = n+ o(n)

as n→ ∞.

Moreover, the eigenfunctions φi(x, λn) and ψi(x, λn) associated with a certain eigenvalue λn,
satisfy the relation

ψi(x, λn) = βnφi(x, λn),

where, by (4),
βn = ψ(0, λn).

We also define the norming constant by

γn := ∥φ(x, λn)∥2H. (6)

Then it is straightforward to verify:
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Lemma 2. (i) All zeros λn of ∆(λ) are simple and the derivative is given by

∆̇(λn) = −γnβn.

(ii) If φ(x, λn) is the eigenfunction corresponding to eigenvalues λn, then

γn = ∥φ(x, λn)∥2H = µ(ρn; di; ai; bi)

[
1 +O

(
1

n

)]
,

where

µ(ρn; di; ai; bi) =

π
2 , for m = 1,

d1
2 + π−d1

2a1b1

(
α2
1 + α′2

1 + α1α
′
1 cos ρn(2d1)

)
, for m = 2,

d1
2 + d2−d1

2a1b1
(α2

1 + α′2
1 + α1α

′
1 cos ρn(2d1))

+ π−d2
2a1b1a2b2

(
α2
1α

2
2 + α′2

1α
2
1 + α′2

1α
′2
2 + 2α1α2α

′
1α2 cos ρn(2d1)

+α2
1α2α

′
2 cos ρn(2d2) + 2α1α2α

′
1α

′
2 cos ρn(2d2 − 2d1)

+α′2
1 α2α

′
2 cos ρn(2d2 − 4d1)

)
, for m = 3,

...
d1
2 + d2−d1

2a1b1
(α2

1 + α′2
1 + α1α

′
1 cos ρn(2d1))

+ d3−d2
2a1b1a2b2

(
α2
1α

2
2 + α′2

1α
2
1 + α′2

1α
′2
2 + 2α1α2α

′
1α2 cos ρn(2d1)

+2α1α2α
′
1α

′
2 cos ρn(2d2 − 2d1) + α′2

1 α2α
′
2 cos ρn(2d2 − 4d1)

+α2
1α2α

′
2 cos ρn(2d2)

)
+ · · ·

+ 1
2a1b1...am−1bm−1

(
α2
1α

2
2...α

2
m−1 + α′2

1α
2
2...αm−1 + · · ·+ α2

1α
2
2...α

′2
m−1

+ · · ·+ α′2
1α

′2
2...α

′2
m−1 + α1α

′
1α

2
2...α

2
m−1 cos ρn(2d1)

+α2
1α2α

′
2α

2
3...α

2
m−1 cos ρn(2d2)

+α2
1α

2
2 . . . αm−1α

′
m−1 cos ρn(2dm−1) + · · ·

+α′2
1α2α

′
2...αm−1α

′
m−1 cos ρn(2[(−1)m−1 + 1]d1 + 2(−1)m−2d2 + · · · − 2dm−1)

+α1α
′
1α

′
2...αm−1α

′
m−1 cos ρn(2(−1)m−1d1 + 2[(−1)m−2 + 1]d2 + · · · − 2dm−1)

+ · · ·+ α1α
′
1α

′
2
2...α′

m−1
2 cos ρn(2d1)

+ · · ·+ α′2
1α

′
2
2...αm−1α

′
m−1 cos ρn(2dm−1)

)
, for m > 3.

By using the similar proof of theorem ((Freiling et al., 2001, Thm:1.2.1)) we get:

Theorem 3. The system of eigenfunctions {φn(x) := φ(x, λn)}n≥0 of the boundary value prob-
lem A is complete in L2((0, π), w).

3 Transformation operator

In this section, we investigate the transformation operator for two operators L and L̃, where
L̃ = L(q̃(x);h;H; di) and dom(Ã) defined by an analogous manner with ℓ replaced by ℓ̃, where
ℓ̃y := −y′′ + q̃(x)y.

Let L(q(x);h;H; di) be another eigenvalue problem such that by assuming H −H ̸= 0. Sup-
pose that θ(x, λ) is the solution of (1) satisfying the initial conditions θ(π, λ) = 1, θ′(π, λ) = −H
and the transmission conditions (3). It is clear that ϕ(λ) := −w(π)L2(φ(λ)) is the character-
istic function of L(q(x);h;H; di) and the zeros of ϕ(λ) are eigenvalues of L(q(x);h;H; di), say
{µn}∞n=1, are real and simple. Define ϕ̃(λ) by an analogous manner.
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Lemma 3. If L(q(x);h;H; di) and L(q̃(x);h;H; di) have the same eigenvalues, i.e.(µn = µ̃n)
and w(π) = w̃(π) then ϕ = ϕ̃.

Proof. From Levin (1996) it follows that ϕ and ϕ̃ are entire functions of order 1/2, consequently
by using Hadamard’s factorization theorem, we have

ϕ(λ) = C
∞∏
n=1

(
1− λ

µn

)
and

ϕ̃(λ) = C̃
∞∏
n=1

(
1− λ

µ̃n

)
.

Define F (λ) := ϕ(λ)

ϕ̃(λ)
. From the assumptions we see that ϕ(µn) = ϕ̃(µn) = 0, therefore F (λ) is an

entire function in λ. By using the asymptotic form of ϕ(λ) and ϕ̃(λ) from (5) with H replaced
by H, we get

F (λ) = 1 + o(1).

So by applying Liouville’s Theorem, we get

ϕ(λ) = ϕ̃(λ).

Suppose that the functions φ̃(x, λ) and ψ̃(x, λ) are solutions of

ℓ̃y = −y′′ + q̃y = λy

under the initial conditions

φ̃(0, λ) = 1, φ̃′(0, λ) = −h,

and

ψ̃(π, λ) = 1, ψ̃′(π, λ) = −H,

as well as the jump conditions (3), respectively. So we get

ψ̃i(x, λ̃n) = β̃nφ̃i(x, λ̃n),

where

β̃n = ψ̃(0, λ̃n),

where φ̃i(x, λ̃n) and ψ̃i(x, λ̃n) be eigenfunctions of L(q̃(x);h;H; di) corresponding to the eigen-
value λ̃n.

Lemma 4. Let Λ0 ⊂ N be a finite set and Λ = N\Λ0. If L(q(x);h;H; di), L(q̃(x);h;H; di) have
the same eigenvalues and, as well as, λn = λ̃n for all n ∈ Λ, where λn and λ̃n are the eigenvalues
of L(q(x);h;H; di) and L(q̃(x);h;H; di), then βn = β̃n for all n ∈ Λ.

Proof. From definition of φ, θ and ψ it follows that{
W (φn(x), ψn(x)) = −w(π)(φ′

n(π) +Hφn(π)) = 0,
W (φn(x), θn(x)) = −w(π)(φ′

n(π) + Hφn(π)) = ϕ(λn).

The above linear system has a unique solution

φn(π) =
ϕ(λn)

h− H
, φ′

n(π) = −Hφn(π).
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Similarly we obtain

φ̃n(π) =
ϕ̃(λ̃n)

h− H
, φ̃′

n(π) = −Hφ̃n(π).

From λn = λ̃n for all n ∈ Λ and Lemma 3, we have ϕ(λn) = ϕ̃(λn). So we get

βn = β̃n

for all n ∈ Λ.

Let
U := dom(A)⊖ {φn : n ∈ Λ0},
Ũ := dom(Ã)⊖ {φ̃n : n ∈ Λ0}.

Define the transformation operator T : U → Ũ by

Tφn = φ̃n,

for all n ∈ Λ. Note that by dom (A)⊖ {φn : n ∈ Λ0} we mean dom (A) contains all of {φn}∞n=1

except {φn}n∈Λ0 .

Lemma 5. The operator T : U → Ũ is bounded.

Proof. From Lemma 2 we see that

γ̃n =∥ φ̃n ∥2=
∫ π

0
φ̃2
n(t)w(t)dt = µ(ρn; di; ai; bi)

[
1 +O

(
1

n

)]
(7)

and

γn =∥ φn ∥2=
∫ π

0
φ2
n(t)w(t)dt = µ(ρn; di; ai; bi)

[
1 +O

(
1

n

)]
(8)

for all n ∈ Λ. Thus by (7) and (8) we get

∥ Tφn ∥2

∥ φn ∥2
=

∥ φ̃n ∥2

∥ φn ∥2
=

1 +O
(
1
n

)
1 +O

(
1
n

) = 1 +O

(
1

n

)
.

Lemma 6. For the operator T , the relation (λ− Ã)T (λ−A)−1 = T holds.

Proof. Assume that f ∈ U . We can extend f in term of the set {φn},

f(x) =
∑
Λ

fnφn(x),

where

fn =
⟨f, φn⟩H
⟨φn, φn⟩H

, for n ∈ Λ.

Assume that λ is in the complex plane and is not an eigenvalue of L(q(x);h;H; di), then the
operator (λ−A)−1 exists and bounded. So we can write as the following form

(λ−A)−1f(x) =
∑
Λ

fnφn(x)

λ− λn
.

We now get

T (λ−A)−1f(x) =
∑
Λ

fnφ̃n(x)

λ− λn

and

(λ− Ã)T (λ−A)−1f(x) =
∑
Λ

fnφ̃n(x).

Then we have
(λ− Ã)T (λ−A)−1 = T.
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4 Inverse problem

In this section, we examine a different representation for T , in a general case when there are m
discontinuous conditions. We generalize the well–known result of Hochstadt Hochstadt (1973).
Denote

G(x, y;λ) :=

{
φ(x,λ)ψ(y,λ)

∆(λ) , 0 < x < y < π,
φ(y,λ)ψ(x,λ)

∆(λ) , 0 < y < x < π,
(9)

where x, y ̸= di. For simplicity we can write

G(x, y;λ) =
φ(x <)ψ(x >)

∆(λ)

where x <:= min{x, y} and x >:= max{x, y} and consider the function

Y (x, λ) =

∫ π

0
G(x, y, λ)f(y)w(y)dy.

The function G(x, y;λ) is called the Green’s function for A. G(x, y;λ) is the kernel of the
inverse operator for the Sturm-Liouville problem, i.e. Y (x, λ) is the solution of the boundary
value problem

ℓY − λY = f(x), U(Y ) = V (Y ) = 0; (10)

and the jump conditions (3), this is easily verified by differentiation. Let Cn be a sequence of
circles about the origin intersecting the positive λ-axis between λn and λn+1. By using Eq. (9),
we get

lim
n→∞

∫
Cn

G(x, y;µ)

λ− µ
dµ = 0, λ ∈ intCn. (11)

From residue integration, it follows that

1

2πi

∫
Cn

G(x, y;µ)

λ− µ
dµ = −G(x, y;λ) +

n∑
k=0

φk(x <)ψk(x >)

∆̇(λk)(λ− λk)
. (12)

By applying Mittag-Leffler expansion for G(x, y, λ) and using (11) and (12) we obtain

G(x, y;λ) =

∞∑
k=0

φk(x <)ψk(x >)

∆̇(λk)(λ− λk)
, (13)

where φk, ψk are eigenfunctions corresponding to the eigenvalues λk.

Theorem 4 (Main Theorem). If L(q(x);h;H; di), L̃(q̃(x);h;H; di) have the same spectrum and
λn = λ̃n for all n ∈ Λ, then

q − q̃ =
∑
Λ0

(ỹnφn)
′w,

a.e. on [0, d1) ∪m−3
i=1 (di, di+1) ∪ (dm−1, π], where ỹn and φn are suitable solutions of ℓ̃y = λny

and ℓy = λny, respectively.

234



M. SHAHRIARI, A. ALIYEV: INVERSE STURM–LIOUVILLE PROBLEMS WITH...

Proof. From (10) and (13) we obtain

(λ−A)−1f(x) =

∫ π

0
G(x, y;λ)f(y)w(y)dy

=
ψ(x)

∫ x
0 φ(y)f(y)w(y)dy + φ(x)

∫ π
x ψ(y)f(y)w(y)dy

∆(λ)

=
∑
Λ

ψn(x)
∫ x
0 φn(y)f(y)w(y)dy + φn(x)

∫ π
x ψn(y)f(y)w(y)dy

∆̇(λn)(λ− λn)

=
∑
Λ

knφn(x)
∫ π
0 φn(y)f(y)w(y)dy

∆̇(λn)(λ− λn)

(14)

for f ∈ U . By applying T to (14) we get

T (λ−A)−1f(x) =
∑
Λ

knφ̃n(x)
∫ π
0 φn(y)f(y)w(y)dy

∆̇(λn)(λ− λn)
. (15)

Define

g(x) :=
ψ̃(x)

∫ x
0 φ(y)f(y)w(y)dy + φ̃(x)

∫ π
x ψ(y)f(y)w(y)dy

∆(λ)
.

By applying the Mittag-Leffler expansion for g(x), we have

g(x) =
∑
Λ0

ũn(x)
∫ x
0 φn(y)f(y)w(y)dy + z̃n(x)

∫ π
x ψn(y)f(y)w(y)dy

∆̇(λn)(λ− λn)

+
∑
Λ

ψ̃n(x)
∫ x
0 φn(y)f(y)w(y)dy + φ̃n(x)

∫ π
x ψ1n(y)f(y)w(y)dy

∆̇(λn)(λ− λn)
. (16)

The second term of the expression (16) is equal to T (λ − A)−1f in (15). The functions ũn(x)
and z̃n(x) represents ψ̃(x, λn) and φ̃(x, λn), respectively. Hence

(λ− Ã)−1Tf(x) = g(x)

−
∑
Λ0

ũn(x)
∫ x
0 φn(y)f(y)w(y)dy + z̃n(x)

∫ π
x ψn(y)f(y)w(y)dy

∆̇(λn)(λ− λn)
. (17)

The right and left-hand side of (17) are in the domain of (λ− Ã). By using a simple calculation,
we get

Tf(x) = f(x)− 1

2

∑
Λ0

ỹn(x)

∫ x

0
φn(y)f(y)w(y)dy,

where
1

2
ỹn(x) =

ũn(x)− βnz̃n(x)

∆̇(λn)
.

From Lemma 6 and Eq. (17) it follows that ÃTf = TAf . For f = φn(x) we have

ÃTφn =Ã

φn − 1

2

∑
m∈Λ0

ỹm

∫ x

0
φmφnw


=Ãφn −

1

2

∑
m∈Λ0

Ãỹm

∫ x

0
φmφnw

− 1

2

∑
m∈Λ0

2ỹ′m(φmφn)w − 1

2

∑
m∈Λ0

ỹm(φmφnw)
′. (18)
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and

TAφn = T (−φ′′
n + qφn)

= Aφn −
1

2

∑
m∈Λ0

ỹm

∫ x

0
φmφnw − 1

2

∑
m∈Λ0

ỹm(φnφ
′
φm

− φmφ
′
n)w. (19)

From (18) and (19) we deduce that

q − q̃ =
∑
Λ0

(ỹmφm)
′w.

If Λ0 is empty, then T is a unitary operator and A = Ã. Hence q = q̃.

Theorem 5. Let λn and φn denote the eigenvalues and eigenfunctions of L(q(x), h,H, di) where
φn, is normalized by φn(0) = 1, φ′

n(0) = −h. Define λ̃n and φ̃n in an analogous manner but
with A replaced by Ã. Suppose that λn = λ̃n and γn = γ̃n, where γn is defined in (6), for all
n ∈ Λ0, then

q = q̃.

Proof. From Lemma 3 applied to L(q(x);h;H; di) and L̃(q̃(x);h;H; di) in place of L(q(x);h;H; di)
and L̃(q̃(x);h;H; di) we obtain ∆(λ) = ∆̃(λ). Hence

∆̇(λn) =
˙̃∆(λn)

for all n ∈ Λ0. From Lemma 2 and assumptions we get βn = β̃n. The remainder of the proof is
as for Theorem 4.

5 Conclusion

In this paper, the inverse Sturm–Liouville problems with finite number of transmission and
Robin boundary conditions was studied. For this purpose, a new Hilbert space by defining a
new inner product for obtaining a self–adjoint operator was defined. So, the asymptotic form of
solutions, eigenvalues and eigenfunctions of this problem was obtained. Finally, we formulated
the Hochestadt’s result based on transformation operator for inverse Sturm–Liouville problems.
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